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Abstract. We survey a recent new line of research on the small com-
munity phenomenon in networks, which characterizes the intuition and
observation that in a broad class of networks, a significant fraction of
nodes belong to some small communities. We propose the formal defini-
tion of this phenomenon as well as the definition of communities, based
on which we are able to both study the community structure of network
models, i.e., whether a model exhibits the small community phenomenon
or not, and design new models that embrace this phenomenon in a nat-
ural way while preserving some other typical network properties such
as the small diameter and the power law degree distribution. We also
introduce the corresponding community detection algorithms, which not
only are used to identify true communities and confirm the existence of
the small community phenomenon in real networks but also have found
other applications, e.g., the classification of networks and core extraction
of networks.

1 Introduction

In recent years, the flourish of real network data that span from various do-
mains including the World Wide Web, the power grid, the friendship network
and many others are offering the scientific community new problems and chal-
lenging new methodology [29]. One canonical way to study networks is to first
empirically explore the network data, extract patterns and properties from the
underlying structure, and then design network models that reproduce the ob-
served properties. For example, various networks are observed to share some
common phenomena with the best-known two the scale-free property and the
small-world phenomenon, which are further simulated by simple random graph
models [4,38]. These models not only give us insight how global properties come
from local generative rules but also provide us the testbeds to study other prob-
lems on networks, e.g. the decentralized search [16] and information diffusion [7].
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We follow this way to study the community structure in networks. A commu-
nity is a group of nodes that share common properties and/or behave similar with
each other, which is reflected as a subset of nodes with dense intra-connections
and (relatively) sparse inter-connections in the network structure. Communities
can be seen as building blocks of networks and play important roles in the spread
of information, marketing and searching [9]. There has been an extensive study of
the community structure of networks along with plenty of community detection
algorithms in the last decade (see e.g., [35,32,12]). The direct impression of the
communities of networks is that they are overlapping, hierarchical and that the
communities of different scales coexist. In this presentation, we formalize and in-
vestigate a new property of the community structure called the small community
phenomenon, that a significant fraction of nodes belong to some small commu-
nities. This phenomenon is intuitive and has some partial supporting evidence
(see Section 5), however, to our knowledge, it has not been seriously proposed
and studied before.

We first introduce the definitions of communities, the small community phe-
nomenon and the corresponding community identification algorithms in Section 2.
Thenwe show that some classical networkmodels do exhibit this new phenomenon
while some others do not, and we also propose new models that embrace the small
community phenomenon as well as the small diameter and the power law degree
distribution properties in Sections 3 and 4, respectively. Finally, we provide fur-
ther evidence of the existence of the small community phenomenon on a set of
social networks1 and give some other applications in Sections 5 and 6.

2 Basic Definitions and Algorithms

2.1 Definition of Community

How to formally characterize the property that a set is community-like, or equiv-
alently, what is the quantitative definition of a community? Though the intuition
behind the community seems clear and simple, there is not universal agreement
on the formal definition of community (see the surveys [35,32,12]). To give such
a definition, we start with a well known concept called conductance in the litera-
ture of computer science, which captures well the intuition behind a community.

Given an undirected graph G = (V,E) and a vertex subset S ⊆ V , let dv
denote the degree of vertex v, and let the volume vol(S) of a set S be the total
degree of vertices in S, that is, vol(S) =

∑
v∈S dv. Let e(S, S̄) and e(S) denote

the number of edges crossing the boundary of S and the number of edges that lie
entirely in S, respectively. For any set S ⊆ V , its conductance φ(S) is defined as

φ(S) = e(S,S̄)

min{vol(S),vol(V−S)} . Thus, roughly speaking, for a subset S of volume

smaller than vol(V )/2, the smaller its conductance is, the more likely that it is
a community.

1 All the data mentioned in this paper can be found from the websites:
http://snap.standford.edu, or http://www-personal.umich.edu/~mejn/net

data, and we only consider the corresponding undirected graphs.

http://snap.standford.edu
http://www-personal.umich.edu/~mejn/netdata
http://www-personal.umich.edu/~mejn/netdata
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Several works directly used the conductance (or related) as a measure of how
good a community is [14,2,18,19]. However, we note that the small conductance
of a set S may be caused by the fact S just has a large number of nodes inside,
and thus fails to reflect the trait of being a community (see for the example
in [22]). Here, we introduce a conductance-based definition that characterizes
the community in a more refined way [23].

Definition 1. ([23]) Given a graph G = (V,E) and α, β > 0, a connected set
S is an (α, β)-community if Φ(S) ≤ α

|S|β . Moreover, if |S| = O((lnn)γ), where

n = |V |, then S is called an (α, β, γ)-community.

Note that under the above definition, 1) only the given set S and its boundary
is involved, namely, the definition is local in that it does not require information
on other parts of the network; 2) any set of constant size is a trivial (α, β)-
community for sufficiently small β. In the following, we are mainly interested
in the communities of larger size (i.e., ω(1)), and these communities are called
proper, in which case β ranges from 0 to 2; 3) if the conductance inequality is
changed by Φ(S) ≤ α

(ln |S|)β , then we call the set S a weak (α, β)-community.

2.2 The Small Community Phenomenon

What are the properties of real communities of a given network? Typically, the
communities may overlap or nest in other clusters, which in turn lead to the hi-
erarchical organization of the vertices of the network [8,34,5]. Several papers
have found the skew distribution of community sizes in many different net-
works [33,6,28,31]. Leskovec et al. [18,19] find that in many large scale networks,
the set of greatest community score (i.e., smallest conductance) is of size about
100 and beyond this size, the community score gradually decreases as the size
of the set becomes larger.

We propose a new phenomenon that originates from the daily experience
and observation that almost every one in our society belongs to some small
communities. (In the following, the term with high probability and almost every
will refer to the probability at least 1 − on(1) and at least 1 − on(1) fraction,
respectively, where n denotes the size of the graph.)

Definition 2. ([23]) Given a graph G from some network model, if almost every
vertex v belongs to some proper (α, β, γ)-community, where α, β, γ > 0 are some
universal constants, then G is said to have the small community phenomenon.

On a real network, we will relax the condition of the small community phe-
nomenon, by requiring that a significant fraction, 60% say, of nodes belong to
some small communities, since the true communities may mix very much with
each other so that it is nearly impossible for a structure-based detecting algo-
rithm to extract them. We will corroborate this with a set of social network data
the small community phenomenon in Section 5.
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2.3 Community Detection Algorithm

How to extract good communities from a given network? The loss of exact defini-
tion of community leads to the vastness of community identification algorithms.
Concerning on the conductance based clustering, there has been a line of re-
search on local graph partitioning algorithms which may be used as subroutines
for clustering [36,1,3]. These algorithms take a graph G and a vertex v as input,
only explore parts of the input graph G and with constant probability, output a
set of small conductance if v indeed belongs to some sets of small conductance.
Such an algorithm is both fast and practical, and has already been used to find
communities in real networks (e.g., [18,25,37,19,13]). In particular, Leskovec et
al. [18,19] have used the PageRank-based local algorithm to analyze the statis-
tics of the community structures over 100 large real-world networks while they
did not test the algorithm on benchmark graphs, which are supposed to have a
recognized community structure.

We developed a variant of the local graph partitioning algorithm Commu-
nitywhich has different stoping conditions from the previous ones, especially
the one used in [18,19] (see the details of Community in [22]). We further com-
pared the effectiveness of the algorithm (denoted O Alg) used by Leskovec et
al. and Community (denoted N Alg) on extracting the true communities on
several benchmarks. One example on an American college football network is
given in Table 1. In this network there are 12 true communities, e.g., Western
Athletic, which are expected to be detected by the two algorithms. The numer-
ical value (e.g., 0.663325) in the table denotes the maximum cosine similarity
of the true community (e.g., Big Ten) and the communities found by the two
algorithms. The higher similarity is (which is at most 1), the more accurate that
the algorithm identifies the true community, and thus it is easy to see that our
algorithm works much better on detecting true communities.

Table 1. The comparison of Community (N Alg) with a previous one (O Alg)
on an American college football network. The numerical value denotes the maximum
cosine similarity of the corresponding true community and the communities extracted
by the corresponding algorithm.

conference O Alg N Alg conference O Alg N Alg

Western Athletic 0.471405 0.843274 Independents 0.291111 0.23094

Sun Belt 0.370479 0.412393 Conference USA 0.580948 0.948683

Big East 0.478091 1 Mountain West 0.417029 1

Atlantic Coast 0.480384 1 Mid-American 0.72111 1

Big Twelve 0.561951 1 Southeastern 0.707107 1

Big Ten 0.663325 1 Pacific Ten 0.471405 1

3 Results on Classical Network Models

Are the classical network models exhibit the small community phenomenon? Ran-
dom network models such as the Erdös-Rényi model (namely, the G(n, p) model)
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and the preferential attachment (PA) model are not supposed to have commu-
nities [28], which is also true under our definition of the community.

Let us take PAmodel with parameter d for example. This model is a generative
model, in which we start with a given graph G0. Then for each t ≥ 1, conditioned
on Gt−1, we form Gt by adding a new vertex xt together with d edges between
xt and yi (1 ≤ i ≤ d), each of which is chosen with probability proportional to
the degree of yi in Gt−1. This model has the nice power law degree distribution
property that has been observed in many real networks. Mihail et al. [26] have
proved that the conductance of a graph from PA (the definition there is slightly
different) is larger than some constant, with high probability, which immediately
implies that the graph generated from this model has no proper communities.

Theorem 1. ([26,23]) With high probability, there is no proper (α, β)-community
in Gn for any 0 < β ≤ 2 and d ≥ 2, where Gn is a random graph in the PA
model with parameter d.

There are also a set of models that have clear community structures, e.g.,
the geometric preferential attachment (GPA) model [10,11], the hierarchical
model [8,34] and Kleinberg’s small world (SW) model [16] when proper pa-
rameters are chosen.

Let us take the (1-dimensional) SW model with parameter r for example. In
this model, we start with a given n-vertex cycle, in which a natural lattice dis-
tance can be defined: for any pair of vertices (u, v) , the distance d(u, v) between
them is the minimum path length connecting u, v. Then for any vertex v, we
connects v to a long-contact u, which is chosen randomly with probability pro-
portional to (d(u, v))−r . Kleinberg have proved an interesting threshold result
on the delivery time of a decentralized algorithm and thus given a characteriza-
tion of the conditions under which people can construct short paths when they
only have access to partial (local) information. We show that the community
structure of this model also exhibit an interesting threshold phenomenon.

Theorem 2. ([23]) In the 1-dimensional small world model G, with high
probability,

1. if r < 1, there is no proper community for an arbitrary node;
2. if r = 1, there exists proper weak (α1, β1)-communities of size n

(lnn)c1 for

every node, where β1 < 1, c1 > 0 and there also exists proper weak (α2, 1)-
communities of size c2n for every node, where 0 < c2 ≤ 1

4 ;
3. if r > 1, every node is contained in some proper (α, β, γ)-communities for

some constants α, β, γ.

4 Two New Models

How to model networks that simultaneously has the power law degree distribution,
the small diameter as well as the small community phenomenon? This question
is motivated by the fact that there indeed exist real networks that exhibit all
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the three properties (eg., the network grqc in Figure 1 in Section 5). Here, we
briefly introduce two dynamic models that satisfies these good properties. More
explanations can be found in [24,20].

The first model is a geometric model, which combines the preferential attach-
ment scheme and an underlying structure in a natural way. It is defined on a
unit sphere S and at each time, a new node is generated uniformly from S and it
will connect to some existing nodes within a neighborhood with probability pro-
portional to their degrees. We also require that each new node is born with some
flexible self-loops which may be eliminated in later steps and are used to make
long-distance connections. We note that this model is based on the GPA model
which simulates networks that both have the power law degree distribution and
small edge expansion [10,11]. We have proved that the coexistence of the small
community phenomenon and the power law degree distribution in our geometric
model is subtle in that the possible choices of a parameter lies in a very narrow
region, beyond which one of the two properties are unlikely to appear [24].

Another model is called the homophily model, which combines the preferential
attachment scheme and the homophily law in a natural way [20]. In this model,
each new node v is born with a color that may be chosen uniformly at random
from all the existing colors or totally new, in which case v is called the seed of the
color, with some probability. Then node v will connects to some existing nodes
that share the same color or all the existing nodes depending on v color, and
these neighbors are chosen following the preferential attachment scheme. Long
connections may be made between seeds. We have shown that any set of nodes
that have the same color is a good small community by choosing appropriate
parameters, which indicates that the model naturally characterizes the property
that nodes in a community share something in common (the color) and that
each community has a representative (its seed). Besides, the whole network as
well as the induced subgraphs of small communities is shown to have the power
law degree distribution.

Both of these two models have all the three nice properties mentioned above.

Theorem 3. ([24,20]) Under proper parameters, with high probability, the ran-
dom graphs Gn from geometric model and Hn from homophily model both satisfy
that 1) the power law degree distribution; 2) the average node to node distance
is O(log n); 3) almost every node belongs to some proper (α, β, γ)-communities
for some global constants α, β, γ.

5 Empirical Results

Do the real network models exhibit the small community phenomenon?
Many different clustering techniques have provide evidence that small com-
munities are abundant, which partially support the thesis of this phenomenon
([33,6,28,31,18,19]). We show that our algorithm Community can be used not
only to verify that several social networks exhibit the small community phe-
nomenon, but also to give a more elaborate characterization called local
dimension of the community structure of the networks.



46 P. Peng

Roughly speaking, given a network G, we will find a triple (α, β, γ) which
characterizes best the community structure of G and is called the local dimension
of G [23,24,22]. A network with local dimension (α, β, γ) has the property that
the fraction of nodes that belong to some (α, β, γ) is maximized in some way (we
refer to our paper [22] for details). Figures 1 and 2 show the size-fraction curves
of several social networks under their local dimensions. A coordinate (x, y) on the
size-fraction curve means that at least y fraction of nodes belong to a community
of size at most x. Thus, we can see that at least 70% fraction of nodes belong
to some communities of size at most 30 in network grqc, which indicates that
the network has an obvious small community phenomenon; while in the network
wikivote almost no nodes belong to communities of size smaller than 300, which
indicates that the network may not have the phenomenon. There are also some
networks that lie between these two cases, e.g., the network astro.
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Fig. 1. The size-fraction curve on four
collaboration networks
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Fig. 2. The size-fraction curve on a
Wikivote network

6 Applications

What are the applications of the small community phenomenon and the re-
lated clustering algorithm Community? Besides the potential applications men-
tioned in the introduction (and many others in [35,32,12]), we give two more
examples.

6.1 Classification of Networks

Quantitatively classifying networks which may vary very differently in disciplines
and scales will offer us great insights both on the network structures and dynamics.
We are able to classify the networks based on their local dimensions and the per-
centage of nodes belonging to small communities. For example, the network grqc
and wikivote in Figures 1 and 2 could be categorized into two classes: networks
exhibit the small community phenomenon and those do not. A more refined clas-
sification over more social networks is given in [22]. Such a method of course ap-
plies to many other networks. We note that recently Lancichinetti et al. [17] and
Onnela et al. [30] have also constructed taxonomies of networks based on different
clustering algorithms and statistical properties of the resulting communities.
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6.2 Core Extraction of Networks

Networks always exhibit the core-periphery structure, in which the core is both
densely connected and central in terms of graph distance and may also have
an embedded core-periphery structure; and so on [18]. The algorithm Com-
munity can be used to extract the core of a network [21]. More precisely, we
start from the original network (graph) G = G0, and recursively perform the
following reductions : for i ≥ 0, run Community to find all the communities of
Gi corresponding to its local dimension (α, β, γ) and if no community is found,
then stop; otherwise, let Gi+1 be the largest connected component of Gi after
deleting all the edges in the communities. The final subgraph Gl is declared to
be the core of G.

To test that Gl indeed acts as the core of the original graph G and even that
Gi+1 acts more importantly than Gi in G, we investigate the power of spreading
influence of each Gi under a simple threshold diffusion model [27,15], in which
we are given a diffusion parameter φ, a size parameter s and a graph G whose
nodes are all initially inactive. We first choose an initial active set S of size s
uniformly at random from the vertices of G and then trigger a diffusion process:
an active node v will remain active forever; and an inactive node v will become
active if and only if at least φdv of its neighbors are active. The process stops
when all nodes are active or the number of active nodes does not increase. We
are interested in the expected number of active nodes at the end of the diffusion.

Fig. 3. The curve of diffusion size vs. initial active set size on a collaboration network
when φ = 0.3

Our experiments on a set of scientific collaboration networks show that for
any i such that 0 ≤ i ≤ l−1, by selecting a random set of size s from Gi+1 as the
initial active set always activates more nodes at the end of the diffusion process
in G than the case by selecting a random set of size s from Gi [21]. In particular,
the nodes of the core Gl, which is usually rather small compared to the graph
G we start with, are much more influential in the diffusion process than average
nodes of G, which indicates that Gl indeed plays a central role and acts as a
core in G at least in the sense of diffusion as above. A more refined illustration
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is given in Figure 3, in which we can see that if the diffusion parameter φ is
fixed (here, 0.3), the size of the initially active set S selected from Gi required
for the diffusion process to reach the limit number (about 10, 000) decreases as
i increases.
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